- Title
- Control design with guaranteed ultimate bound for feedback linearizable systems
- Creator
- Kofman, Ernesto; Fontenla, Fernando; Hernan, Haimovich; Seron, María M.
- Relation
- 17th World Congress of the International Federation of Automatic Control. Proceedings of the 17th World Congress of the International Federation of Automatic Control (Seoul, Korea 6-11 July, 2008) p. 242-247
- Relation
- http://www.ifac-papersonline.net/World_Congress/Proceedings_of_the_17th_IFAC_World_Congress__2008/index.html
- Publisher
- International Federation of Automatic Control (IFAC)
- Resource Type
- conference paper
- Date
- 2008
- Description
- For a class of perturbed feedback linearizable nonlinear systems, we consider the computation and assignment of prescribed ultimate bounds on the system states. We employ a recently proposed componentwise bound computation procedure, which directly takes into account both the system and perturbation structures by performing componentwise analysis. We first derive sufficient conditions to ensure that the trajectories originating from initial conditions in an appropriate set are ultimately bounded. Secondly, and most importantly, for statefeedback - linearizable nonlinear systems with matched perturbations, we provide a systematic design procedure to compute a state feedback control that ensures a prescribed ultimate bound for the closed-loop system states. The procedure combines nonlinear state-feedbacklinearizing control with a state-feedback matrix computed via an eigenstructure assignment method previously reported by the authors. A simulation example illustrates the simplicity and systematicity of the proposed design method.
- Subject
- feedback linearizable systems; computation; assignment; system states
- Identifier
- uon:6032
- Identifier
- http://hdl.handle.net/1959.13/45136
- Identifier
- ISBN:9781123478902
- Full Text
- Reviewed
- Hits: 3389
- Visitors: 3609
- Downloads: 275
Thumbnail | File | Description | Size | Format | |||
---|---|---|---|---|---|---|---|
View Details Download | SOURCE1 | Author final version | 379 KB | Adobe Acrobat PDF | View Details Download |